2
các giải thuật đệ quy và ngẫu nhiên. Tính đúng của thuật toán bây giờ không còn bắt
buộc đối với một số cách giải bài toán, nhất là các cách giải gần đúng. Trong thực
tiễn có nhiều trường hợp người ta chấp nhận các cách giải thường cho kết quả tốt
(nhưng không phải lúc nào cũng tốt) nhưng ít phức tạp và hiệu quả. Chẳng hạn nếu
giải một bài toán bằng thuật toán tối ưu đòi hỏi máy tính thực hiên nhiều năm thì
chúng ta có thể sẵn lòng chấp nhận một giải pháp gần tối ưu mà chỉ cần máy tính
chạy trong vài ngày hoặc vài giờ.
Các cách giải chấp nhận được nhưng không hoàn toàn đáp ứng đầy đủ các tiêu chuẩn
của thuật toán thường được gọi là các thuật giải. Khái niệm mở rộng này của thuật
toán đã mở cửa cho chúng ta trong việc tìm kiếm phương pháp để giải quyết các bài
toán được đặt ra.
Một trong những thuật giải thường được đề cập đến và sử dụng trong khoa học trí
tuệ nhân tạo là các cách giải theo kiểu Heuristic
II. THUẬT GIẢI HEURISTIC
Thuật giải Heuristic là một sự mở rộng khái niệm thuật toán. Nó thể hiện cách giải
bài toán với các đặc tính sau:
Thường tìm được lời giải tốt (nhưng không chắc là lời giải tốt nhất)
Giải bài toán theo thuật giải Heuristic thường dễ dàng và nhanh chóng
đưa ra kết quả hơn so với giải thuật tối ưu, vì vậy chi phí thấp hơn.
Thuật giải Heuristic thường thể hiện khá tự nhiên, gần gũi với cách
suy nghĩ và hành động của con người.
Có nhiều phương pháp để xây dựng một thuật giải Heuristic, trong đó người ta
thường dựa vào một số nguyên lý cơ bản như sau:
Nguyên lý vét cạn thông minh: Trong một bài toán tìm kiếm nào đó, khi
không gian tìm kiếm lớn, ta thường tìm cách giới hạn lại không gian tìm kiếm
hoặc thực hiện một kiểu dò tìm đặc biệt dựa vào đặc thù của bài toán để
nhanh chóng tìm ra mục tiêu.
Nguyên lý tham lam (Greedy): Lấy tiêu chuẩn tối ưu (trên phạm vi toàn
cục) của bài toán để làm tiêu chuẩn chọn lựa hành động cho phạm vi cục bộ
của từng bước (hay từng giai đoạn) trong quá trình tìm kiếm lời giải.
Nguyên lý thứ tự: Thực hiện hành động dựa trên một cấu trúc thứ tự hợp
lý của không gian khảo sát nhằm nhanh chóng đạt được một lời giải tốt.
Hàm Heuristic: Trong việc xây dựng các thuật giải Heuristic, người ta
thường dùng các hàm Heuristic. Đó là các hàm đánh già thô, giá trị của hàm
phụ thuộc vào trạng thái hiện tại của bài toán tại mỗi bước giải. Nhờ giá trị
này, ta có thể chọn được cách hành động tương đối hợp lý trong từng bước
của thuật giải.
Bài toán hành trình ngắn nhất – ứng dụng nguyên lý Greedy