![]()
A
B.
C.
D.
Câu 11: PTTQ của mp qua hai điểm A(2; -1; 1), B(-2; 1; -1) và vuông góc mp 3x + 2y – z + 5 = 0 là:
A. x + 5y + 7z – 1 = 0 B. x – 5y + 7z + 1 = 0 C. x – 5y – 7z = 0 D. x + 5y – 7z = 0
Câu 12: Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) qua điểm
và có vectơ pháp tuyến
có phương trình là :
A.
B.
C.
D.
.
Câu 13: Cho mặt cầu (S): x² + y² + z² – 2x – 4y – 6z – 2 = 0 và mặt phẳng (P): 4x + 3y – 12z + 10 = 0. Viết
phương trình mặt phẳng (Q) // (P) và tiếp xúc với mặt cầu (S).
A. 4x + 3y – 12z + 78 = 0 hoặc 4x + 3y – 12z – 26 = 0
B. 4x + 3y – 12z – 78 = 0 hoặc 4x + 3y – 12z + 26 = 0
C. 4x + 3y – 12z + 62 = 0 hoặc 4x + 3y – 12z – 20 = 0
D. 4x + 3y – 12z – 62 = 0 hoặc 4x + 3y – 12z + 20 = 0
Câu 14. Xác định giá trị của m để mặt phẳng (P) :
và mặt phẳng (Q):
vuông góc?
A
B.
C.
D.
Câu 15: Hãy lập phương trình mặt cầu tâm
và tiếp xúc với mặt phẳng
?
222
4 2 8 40xyz xy z
222
4 2 8 40xyz xy z
222
4 2 8 40xyz xyz
222
4 2 8 40xyz xy z
Câu 16. Cho mặt phẳng (P) :
và mặt cầu (S):
( ) ( ) ( )
2 22
1 2 14xyz− +− ++ =
, biết mặt phẳng
(P) cắt mặt cầu (S) theo thiết diện là một hình tròn. Tính bán kính r của hình tròn thiết diện?
A
B.
C.
D.
Câu 17: Cho M(–3; 2; 4), gọi A, B, C lần lượt là hình chiếu của M trên Ox, Oy, Oz. PT mp (ABC) là
A. 4x – 6y –3z -12 = 0 B. 3x – 6y –4z + 12 = 0 C. 6x – 4y –3z – 12 = 0 D. 4x – 6y –3z+12 = 0
Câu 18: Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;1;2), B(2; –2;1),C(–2;0;1). Tìm tọa độ của
điểm M thuộc mặt phẳng (α): 2x + 2y + z – 3 = 0 sao cho MA = MB = MC.
A. (2; 1; 3) B. (–2; 5; 7) C. (2; 3; –7) D. (1; 2; 5)
Câu 19. Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 1; 2). Tìm điểm N thuộc mặt phẳng Oxy sao cho
độ dài đoạn thẳng MN là ngắn nhất.
A. (1; 1; 0) B. (1; 2; 2) C. (2; 1; 0) D. (2; 2; 0)
Câu 20: Trong không gian với hệ tọa độ Oxyz, cho (P) là mặt phẳng đi qua M(2; 1; 2) và cắt các tia Ox, Oy, Oz
lần lượt tại A(a; 0; 0), B(0; b; 0), C(0; 0; c) sao cho thể tích của khối tứ diện OABC là nhỏ nhất với a, b, c là số
dương. Viết phương trình mặt phẳng (P).
A. (P): 2x + y + 2z – 9 = 0 B. (P): x + 2y + z – 6 = 0 C. (P): 2x – y + 2z – 7 = 0 D. (P): x – 2y + z – 4 = 0